Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables

In this paper we study the asymptotic behavior of the tail probabilities of sums of dependent and real-valued random variables whose distributions are assumed to be subexponential and not necessarily of dominated variation. We propose two general dependence assumptions under which the asymptotic behavior of the tail probabilities of the sums is the same as that in the independent case. In parti...

متن کامل

Asymptotic Behavior of Tail and Local Probabilities for Sums of Subexponential Random Variables

Let {Xk, k ≥ 1} be a sequence of independently and identically distributed random variables with common subexponential distribution function concentrated on (−∞,∞), and let τ be a nonnegative and integer-valued random variable with a finite mean and which is independent of the sequence {Xk, k ≥ 1}. This paper investigates asymptotic behavior of the tail probabilities P(· > x) and the local prob...

متن کامل

Asymptotic Behavior of Weighted Sums of Weakly Negative Dependent Random Variables

Let be a sequence of weakly negative dependent (denoted by, WND) random variables with common distribution function F and let be other sequence of positive random variables independent of and for some and for all . In this paper, we study the asymptotic behavior of the tail probabilities of the maximum, weighted sums, randomly weighted sums and randomly indexed weighted sums of heavy...

متن کامل

Strong Laws for Weighted Sums of Negative Dependent Random Variables

In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.

متن کامل

Efficient Simulation of Tail Probabilities of Sums of Dependent Random Variables

We study asymptotically optimal simulation algorithms for approximating the tail probability of P(e1 + · · · + ed > u) as u → ∞. The first algorithm proposed is based on Conditional Monte Carlo and assumes that (X1, . . . , Xd) has an elliptical distribution with very mild assumptions on the radial component. This algorithm is applicable to a large class of models in finance as we demonstrate w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2008

ISSN: 0894-9840,1572-9230

DOI: 10.1007/s10959-008-0159-5